Near-Contact Motion of Surfactant-Covered Spherical Drops: Ionic Surfactant.

نویسندگان

  • Blawzdziewicz
  • Cristini
  • Loewenberg
چکیده

A lubrication analysis is presented for near-contact axisymmetric motion of spherical drops covered with an insoluble nondiffusing surfactant. The surfactant equation of state is arbitrary; detailed results are presented for ionic surfactants. The qualitative behavior of the system is determined by the dimensionless force parameter &Fcirc;, the external force normalized by the maximum resistance force generated by Marangoni stresses. For &Fcirc; > 1 drops coalesce on a time scale commensurate with the coalescence time tau0 for drops with clean interfaces. For &Fcirc; < 1, the system evolves on the time scale tau0 until Marangoni stresses approximately balance the external force; thereafter a slow evolution occurs on the Stokes time scale. In the long-time regime a self-similar surfactant concentration profile is attained that scales with the extent of the near-contact region. The gap width decreases exponentially with time but slower than for rigid particles because of surfactant backflow. For &Fcirc; < 1, drop coalescence does not occur without van der Waals attraction. Quantitative results depend only moderately on the surfactant equation of state. Copyright 1999 Academic Press.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Motion of a spherical particle near a planar fluid-fluid interface: the effect of surface incompressibility.

Hydrodynamic coupling of a spherical particle to an undeformable planar fluid-fluid interface under creeping-flow conditions is discussed. The interface can be either surfactant-free or covered with an incompressible surfactant monolayer. In the incompressible surfactant limit, a uniform surfactant concentration is maintained by Marangoni stresses associated with infinitesimal surfactant redist...

متن کامل

Repeated formation of fluid threads in breakup of a surfactant-covered jet.

Breakup of thin threads is widely observed in nature and technology. As a surfactant-covered liquid jet approaches breakup, its profile consists of a periodic pattern of drops connected by thin threads. Near the locations where the threads join the drops, simulations show that a series of thinner threads arise as the jet breaks. That threads can continue to form repeatedly without addition of n...

متن کامل

Molecular Dynamics Simulations of the Interior of Aqueous Reverse Micelles

Aqueous reverse micelles, which are surfactant aggregates in nonpolar solvents that enclose packets of aqueous solution, have been widely studied experimentally and theoretically, but much remains unknown about the properties of water in the interior. The few previous molecular dynamics simulations of reverse micelles have not examined how the micelle size affects these properties. We have mode...

متن کامل

Numerical Study of Surfactant - Laden Drop - Drop

In this paper, we numerically investigate the effects of surfactant on dropdrop interactions in a 2D shear flow using a coupled level-set and immersed interface approach proposed in (Xu et al., J. Comput. Phys., 212 (2006), 590–616). We find that surfactant plays a critical and nontrivial role in drop-drop interactions. In particular, we find that the minimum distance between the drops is a non...

متن کامل

Numerical simulation of moving contact lines with surfactant by immersed boundary method

In this paper, we present an immersed boundary method for simulating moving contact lines with surfactant. The governing equations are the incompressible Navier-Stokes equations with the usual mixture of Eulerian fluid variables and Lagrangian interfacial markers. The immersed boundary force has two components: one from the nonhomogeneous surface tension determined by the distribution of surfac...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of colloid and interface science

دوره 211 2  شماره 

صفحات  -

تاریخ انتشار 1999